Inappropriate use of L-BFGS, Illustrated on frame field design

08/12/2015
by   Nicolas Ray, et al.
0

L-BFGS is a hill climbing method that is guarantied to converge only for convex problems. In computer graphics, it is often used as a black box solver for a more general class of non linear problems, including problems having many local minima. Some works obtain very nice results by solving such difficult problems with L-BFGS. Surprisingly, the method is able to escape local minima: our interpretation is that the approximation of the Hessian is smoother than the real Hessian, making it possible to evade the local minima. We analyse the behavior of L-BFGS on the design of 2D frame fields. It involves an energy function that is infinitly continuous, strongly non linear and having many local minima. Moreover, the local minima have a clear visual interpretation: they corresponds to differents frame field topologies. We observe that the performances of LBFGS are almost unpredictables: they are very competitive when the field is sampled on the primal graph, but really poor when they are sampled on the dual graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset