Incorporating GAN for Negative Sampling in Knowledge Representation Learning

09/23/2018
by   Peifeng Wang, et al.
0

Knowledge representation learning aims at modeling knowledge graph by encoding entities and relations into a low dimensional space. Most of the traditional works for knowledge embedding need negative sampling to minimize a margin-based ranking loss. However, those works construct negative samples through a random mode, by which the samples are often too trivial to fit the model efficiently. In this paper, we propose a novel knowledge representation learning framework based on Generative Adversarial Networks (GAN). In this GAN-based framework, we take advantage of a generator to obtain high-quality negative samples. Meanwhile, the discriminator in GAN learns the embeddings of the entities and relations in knowledge graph. Thus, we can incorporate the proposed GAN-based framework into various traditional models to improve the ability of knowledge representation learning. Experimental results show that our proposed GAN-based framework outperforms baselines on triplets classification and link prediction tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro