Inducing and Using Alignments for Transition-based AMR Parsing

05/03/2022
by   Andrew Drozdov, et al.
2

Transition-based parsers for Abstract Meaning Representation (AMR) rely on node-to-word alignments. These alignments are learned separately from parser training and require a complex pipeline of rule-based components, pre-processing, and post-processing to satisfy domain-specific constraints. Parsers also train on a point-estimate of the alignment pipeline, neglecting the uncertainty due to the inherent ambiguity of alignment. In this work we explore two avenues for overcoming these limitations. First, we propose a neural aligner for AMR that learns node-to-word alignments without relying on complex pipelines. We subsequently explore a tighter integration of aligner and parser training by considering a distribution over oracle action sequences arising from aligner uncertainty. Empirical results show this approach leads to more accurate alignments and generalization better from the AMR2.0 to AMR3.0 corpora. We attain a new state-of-the art for gold-only trained models, matching silver-trained performance without the need for beam search on AMR3.0.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro