Integer Fine-tuning of Transformer-based Models

09/20/2022
by   Mohammadreza Tayaranian, et al.
0

Transformer based models are used to achieve state-of-the-art performance on various deep learning tasks. Since transformer-based models have large numbers of parameters, fine-tuning them on downstream tasks is computationally intensive and energy hungry. Automatic mixed-precision FP32/FP16 fine-tuning of such models has been previously used to lower the compute resource requirements. However, with the recent advances in the low-bit integer back-propagation, it is possible to further reduce the computation and memory foot-print. In this work, we explore a novel integer training method that uses integer arithmetic for both forward propagation and gradient computation of linear, convolutional, layer-norm, and embedding layers in transformer-based models. Furthermore, we study the effect of various integer bit-widths to find the minimum required bit-width for integer fine-tuning of transformer-based models. We fine-tune BERT and ViT models on popular downstream tasks using integer layers. We show that 16-bit integer models match the floating-point baseline performance. Reducing the bit-width to 10, we observe 0.5 average score drop. Finally, further reduction of the bit-width to 8 provides an average score drop of 1.7 points.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro