Integrally Pre-Trained Transformer Pyramid Networks

11/23/2022
by   Yunjie Tian, et al.
0

In this paper, we present an integral pre-training framework based on masked image modeling (MIM). We advocate for pre-training the backbone and neck jointly so that the transfer gap between MIM and downstream recognition tasks is minimal. We make two technical contributions. First, we unify the reconstruction and recognition necks by inserting a feature pyramid into the pre-training stage. Second, we complement mask image modeling (MIM) with masked feature modeling (MFM) that offers multi-stage supervision to the feature pyramid. The pre-trained models, termed integrally pre-trained transformer pyramid networks (iTPNs), serve as powerful foundation models for visual recognition. In particular, the base/large-level iTPN achieves an 86.2 top-1 accuracy on ImageNet-1K, a 53.2 with 1x training schedule using Mask-RCNN, and a 54.7 semantic segmentation using UPerHead – all these results set new records. Our work inspires the community to work on unifying upstream pre-training and downstream fine-tuning tasks. Code and the pre-trained models will be released at https://github.com/sunsmarterjie/iTPN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset