Intelligent Reflecting Surface-Aided Joint Processing Coordinated Multipoint Transmission
This paper investigates intelligent reflecting surface (IRS)-aided multicell wireless networks, where an IRS is deployed to assist the joint processing coordinated multipoint (JP-CoMP) transmission from multiple base stations (BSs) to multiple cell-edge users. By taking into account the fairness among cell-edge users, we aim at maximizing the minimum achievable rate of cell-edge users by jointly optimizing the transmit beamforming at the BSs and the phase shifts at the IRS. As a compromise approach, we transform the non-convex max-min problem into an equivalent form based on the mean-square error method, which facilities the design of an efficient suboptimal iterative algorithm. In addition, we investigate two scenarios, namely the single-user system and the multiuser system. For the former scenario, the optimal transmit beamforming is obtained based on the dual subgradient method, while the phase shift matrix is optimized based on the Majorization-Minimization method. For the latter scenario, the transmit beamforming matrix and phase shift matrix are obtained by the second-order cone programming and semidefinite relaxation techniques, respectively. Numerical results demonstrate the significant performance improvement achieved by deploying an IRS. Furthermore, the proposed JP-CoMP design significantly outperforms the conventional coordinated scheduling/coordinated beamforming coordinated multipoint (CS/CB-CoMP) design in terms of max-min rate.
READ FULL TEXT