Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning

by   Joseph Giovanelli, et al.

Hyperparameter optimization (HPO) is important to leverage the full potential of machine learning (ML). In practice, users are often interested in multi-objective (MO) problems, i.e., optimizing potentially conflicting objectives, like accuracy and energy consumption. To tackle this, the vast majority of MO-ML algorithms return a Pareto front of non-dominated machine learning models to the user. Optimizing the hyperparameters of such algorithms is non-trivial as evaluating a hyperparameter configuration entails evaluating the quality of the resulting Pareto front. In literature, there are known indicators that assess the quality of a Pareto front (e.g., hypervolume, R2) by quantifying different properties (e.g., volume, proximity to a reference point). However, choosing the indicator that leads to the desired Pareto front might be a hard task for a user. In this paper, we propose a human-centered interactive HPO approach tailored towards multi-objective ML leveraging preference learning to extract desiderata from users that guide the optimization. Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator. Concretely, we leverage pairwise comparisons of distinct Pareto fronts to learn such an appropriate quality indicator. Then, we optimize the hyperparameters of the underlying MO-ML algorithm towards this learned indicator using a state-of-the-art HPO approach. In an experimental study targeting the environmental impact of ML, we demonstrate that our approach leads to substantially better Pareto fronts compared to optimizing based on a wrong indicator pre-selected by the user, and performs comparable in the case of an advanced user knowing which indicator to pick.


page 7

page 12

page 13


Multi-objective hyperparameter optimization with performance uncertainty

The performance of any Machine Learning (ML) algorithm is impacted by th...

Multi-Objective Hyperparameter Optimization – An Overview

Hyperparameter optimization constitutes a large part of typical modern m...

HyperTuner: A Cross-Layer Multi-Objective Hyperparameter Auto-Tuning Framework for Data Analytic Services

Hyper-parameters optimization (HPO) is vital for machine learning models...

A survey on multi-objective hyperparameter optimization algorithms for Machine Learning

Hyperparameter optimization (HPO) is a necessary step to ensure the best...

Enhanced Innovized Repair Operator for Evolutionary Multi- and Many-objective Optimization

"Innovization" is a task of learning common relationships among some or ...

Mind the Gap: Measuring Generalization Performance Across Multiple Objectives

Modern machine learning models are often constructed taking into account...

A Pareto-optimal compositional energy-based model for sampling and optimization of protein sequences

Deep generative models have emerged as a popular machine learning-based ...

Please sign up or login with your details

Forgot password? Click here to reset