Interference and Coverage Analysis of mmWave Inter-Vehicle Broadcast with Directional Antennas

12/21/2021
by   Tianyi Zhang, et al.
0

Thanks to the availability of large bandwidth and high-gain directional antennas at the millimeter-wave (mmWave) bands, mmWave communications have been considered as one of the primary solutions to meet the high data rates needs in vehicular networks. Unicast in mmWave vehicle-to-vehicle (V2V) communications has been well-studied, but much less attention has been paid to V2V broadcast which is required by many V2V applications such as active safety. To fill the gap, this paper systematically investigates mmWave V2V broadcast by considering the unique properties of mmWave signal propagation in V2V environments as well as the impacts of directional antennas and interference. Based on widely-accepted, high-fidelity system models, we mathematically analyze the receiver-side signal-to-interference-plus-noise-ratio (SINR) and broadcast coverage, and we study the impacts of blockage, inter-vehicle distance, vehicle density and beam pattern. Through comprehensive numerical analysis, we find out that, instead of a single unique optimal beamwidth, there exists an optimal range of beamwidth, in which the beamwidths have similar performance and can maximize the coverage. We also find out that the selection of carrier sensing range plays an important role as it highly influences the performance of the whole vehicular networks. Our analysis provides unique insight into mmWave V2V broadcast, and it sheds light on designing effective V2V broadcast protocols.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset