Investigating the effects Diversity Mechanisms have on Evolutionary Algorithms in Dynamic Environments

10/09/2016
by   Matthew Hughes, et al.
0

Evolutionary algorithms have been successfully applied to a variety of optimisation problems in stationary environments. However, many real world optimisation problems are set in dynamic environments where the success criteria shifts regularly. Population diversity affects algorithmic performance, particularly on multiobjective and dynamic problems. Diversity mechanisms are methods of altering evolutionary algorithms in a way that promotes the maintenance of population diversity. This project intends to measure and compare the performance effect a variety of diversity mechanisms have on an evolutionary algorithm when facing an assortment of dynamic problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro