IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet
Accurate localization and segmentation of intervertebral disc (IVD) is crucial for the assessment of spine disease diagnosis. Despite the technological advances in medical imaging, IVD localization and segmentation are still manually performed, which is time-consuming and prone to errors. If, in addition, multi-modal imaging is considered, the burden imposed on disease assessments increases substantially. In this paper, we propose an architecture for IVD localization and segmentation in multi-modal MRI, which extends the well-known UNet. Compared to single images, multi-modal data brings complementary information, contributing to better data representation and discriminative power. Our contributions are three-fold. First, how to effectively integrate and fully leverage multi-modal data remains almost unexplored. In this work, each MRI modality is processed in a different path to better exploit their unique information. Second, inspired by HyperDenseNet, the network is densely-connected both within each path and across different paths, granting the model the freedom to learn where and how the different modalities should be processed and combined. Third, we improved standard U-Net modules by extending inception modules with two dilated convolutions blocks of different scale, which helps handling multi-scale context. We report experiments over the data set of the public MICCAI 2018 Challenge on Automatic Intervertebral Disc Localization and Segmentation, with 13 multi-modal MRI images used for training and 3 for validation. We trained IVD-Net on an NVidia TITAN XP GPU with 16 GBs RAM, using ADAM as optimizer and a learning rate of 10e-5 during 200 epochs. Training took about 5 hours, and segmentation of a whole volume about 2-3 seconds, on average. Several baselines, with different multi-modal fusion strategies, were used to demonstrate the effectiveness of the proposed architecture.
READ FULL TEXT