Joint and individual analysis of breast cancer histologic images and genomic covariates

12/01/2019
by   Iain Carmichael, et al.
0

A key challenge in modern data analysis is understanding connections between complex and differing modalities of data. For example, two of the main approaches to the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genetics. While histopathology is the gold standard for diagnostics and there have been many recent breakthroughs in genetics, there is little overlap between these two fields. We aim to bridge this gap by developing methods based on Angle-based Joint and Individual Variation Explained (AJIVE) to directly explore similarities and differences between these two modalities. Our approach exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction to address some of the challenges presented by statistical analysis of histopathology image data. CNNs raise issues of interpretability that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features. Our results provide many interpretable connections and contrasts between histopathology and genetics.

READ FULL TEXT
research
02/24/2017

Microwave breast cancer detection using Empirical Mode Decomposition features

Microwave-based breast cancer detection has been proposed as a complemen...
research
02/04/2022

Interpretability methods of machine learning algorithms with applications in breast cancer diagnosis

Early detection of breast cancer is a powerful tool towards decreasing i...
research
08/17/2018

Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks

Manual counting of mitotic tumor cells in tissue sections constitutes on...
research
02/27/2020

2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis Classification

Automated methods for breast cancer detection have focused on 2D mammogr...
research
01/22/2021

RaJIVE: Robust Angle Based JIVE for Integrating Noisy Multi-Source Data

With increasing availability of high dimensional, multi-source data, the...
research
04/07/2017

Angle-Based Joint and Individual Variation Explained

Integrative analysis of disparate data blocks measured on a common set o...
research
09/25/2021

Statistical Inference for Data Integration

In the age of big data, data integration is a critical step especially i...

Please sign up or login with your details

Forgot password? Click here to reset