Joint Reasoning for Temporal and Causal Relations

06/12/2019
by   Qiang Ning, et al.
3

Understanding temporal and causal relations between events is a fundamental natural language understanding task. Because a cause must be before its effect in time, temporal and causal relations are closely related and one relation even dictates the other one in many cases. However, limited attention has been paid to studying these two relations jointly. This paper presents a joint inference framework for them using constrained conditional models (CCMs). Specifically, we formulate the joint problem as an integer linear programming (ILP) problem, enforcing constraints inherently in the nature of time and causality. We show that the joint inference framework results in statistically significant improvement in the extraction of both temporal and causal relations from text.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset