Jointly Trained Transformers models for Spoken Language Translation
Conventional spoken language translation (SLT) systems are pipeline based systems, where we have an Automatic Speech Recognition (ASR) system to convert the modality of source from speech to text and a Machine Translation (MT) systems to translate source text to text in target language. Recent progress in the sequence-sequence architectures have reduced the performance gap between the pipeline based SLT systems (cascaded ASR-MT) and End-to-End approaches. Though End-to-End and cascaded ASR-MT systems are reaching to the comparable levels of performances, we can see a large performance gap using the ASR hypothesis and oracle text w.r.t MT models. This performance gap indicates that the MT systems are prone to large performance degradation due to noisy ASR hypothesis as opposed to oracle text transcript. In this work this degradation in the performance is reduced by creating an end to-end differentiable pipeline between the ASR and MT systems. In this work, we train SLT systems with ASR objective as an auxiliary loss and both the networks are connected through the neural hidden representations. This train ing would have an End-to-End differentiable path w.r.t to the final objective function as well as utilize the ASR objective for better performance of the SLT systems. This architecture has improved from BLEU from 36.8 to 44.5. Due to the Multi-task training the model also generates the ASR hypothesis which are used by a pre-trained MT model. Combining the proposed systems with the MT model has increased the BLEU score by 1. All the experiments are reported on English-Portuguese speech translation task using How2 corpus. The final BLEU score is on-par with the best speech translation system on How2 dataset with no additional training data and language model and much less parameters.
READ FULL TEXT