Kidnapping Model: An Extension of Selten's Game
Selten's game is a kidnapping model where the probability of capturing the kidnapper is independent of whether the hostage has been released or executed. Most often, in view of the elevated sensitivities involved, authorities put greater effort and resources into capturing the kidnapper if the hostage has been executed, in contrast to the case when a ransom is paid to secure the hostage's release. In this paper, we study the asymmetric game when the probability of capturing the kidnapper depends on whether the hostage has been executed or not and find a new uniquely determined perfect equilibrium point in Selten's game.
READ FULL TEXT