Know What I don't Know: Handling Ambiguous and Unanswerable Questions for Text-to-SQL

12/17/2022
by   Bing Wang, et al.
0

The task of text-to-SQL is to convert a natural language question to its corresponding SQL query in the context of relational tables. Existing text-to-SQL parsers generate a "plausible" SQL query for an arbitrary user question, thereby failing to correctly handle problematic user questions. To formalize this problem, we conduct a preliminary study on the observed ambiguous and unanswerable cases in text-to-SQL and summarize them into 6 feature categories. Correspondingly, we identify the causes behind each category and propose requirements for handling ambiguous and unanswerable questions. Following this study, we propose a simple yet effective counterfactual example generation approach for the automatic generation of ambiguous and unanswerable text-to-SQL examples. Furthermore, we propose a weakly supervised model DTE (Detecting-Then-Explaining) for error detection, localization, and explanation. Experimental results show that our model achieves the best result on both real-world examples and generated examples compared with various baselines. We will release data and code for future research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset