Know What I don't Know: Handling Ambiguous and Unanswerable Questions for Text-to-SQL
The task of text-to-SQL is to convert a natural language question to its corresponding SQL query in the context of relational tables. Existing text-to-SQL parsers generate a "plausible" SQL query for an arbitrary user question, thereby failing to correctly handle problematic user questions. To formalize this problem, we conduct a preliminary study on the observed ambiguous and unanswerable cases in text-to-SQL and summarize them into 6 feature categories. Correspondingly, we identify the causes behind each category and propose requirements for handling ambiguous and unanswerable questions. Following this study, we propose a simple yet effective counterfactual example generation approach for the automatic generation of ambiguous and unanswerable text-to-SQL examples. Furthermore, we propose a weakly supervised model DTE (Detecting-Then-Explaining) for error detection, localization, and explanation. Experimental results show that our model achieves the best result on both real-world examples and generated examples compared with various baselines. We will release data and code for future research.
READ FULL TEXT