Knowledge-Integrated Informed AI for National Security
The state of artificial intelligence technology has a rich history that dates back decades and includes two fall-outs before the explosive resurgence of today, which is credited largely to data-driven techniques. While AI technology has and continues to become increasingly mainstream with impact across domains and industries, it's not without several drawbacks, weaknesses, and potential to cause undesired effects. AI techniques are numerous with many approaches and variants, but they can be classified simply based on the degree of knowledge they capture and how much data they require; two broad categories emerge as prominent across AI to date: (1) techniques that are primarily, and often solely, data-driven while leveraging little to no knowledge and (2) techniques that primarily leverage knowledge and depend less on data. Now, a third category is starting to emerge that leverages both data and knowledge, that some refer to as "informed AI." This third category can be a game changer within the national security domain where there is ample scientific and domain-specific knowledge that stands ready to be leveraged, and where purely data-driven AI can lead to serious unwanted consequences. This report shares findings from a thorough exploration of AI approaches that exploit data as well as principled and/or practical knowledge, which we refer to as "knowledge-integrated informed AI." Specifically, we review illuminating examples of knowledge integrated in deep learning and reinforcement learning pipelines, taking note of the performance gains they provide. We also discuss an apparent trade space across variants of knowledge-integrated informed AI, along with observed and prominent issues that suggest worthwhile future research directions. Most importantly, this report suggests how the advantages of knowledge-integrated informed AI stand to benefit the national security domain.
READ FULL TEXT