Label Leakage and Protection in Two-party Split Learning

02/17/2021
by   Oscar Li, et al.
0

In vertical federated learning, two-party split learning has become an important topic and has found many applications in real business scenarios. However, how to prevent the participants' ground-truth labels from possible leakage is not well studied. In this paper, we consider answering this question in an imbalanced binary classification setting, a common case in online business applications. We first show that, norm attack, a simple method that uses the norm of the communicated gradients between the parties, can largely reveal the ground-truth labels from the participants. We then discuss several protection techniques to mitigate this issue. Among them, we have designed a principled approach that directly maximizes the worst-case error of label detection. This is proved to be more effective in countering norm attack and beyond. We experimentally demonstrate the competitiveness of our proposed method compared to several other baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset