LAME: Layout Aware Metadata Extraction Approach for Research Articles
The volume of academic literature, such as academic conference papers and journals, has increased rapidly worldwide, and research on metadata extraction is ongoing. However, high-performing metadata extraction is still challenging due to diverse layout formats according to journal publishers. To accommodate the diversity of the layouts of academic journals, we propose a novel LAyout-aware Metadata Extraction (LAME) framework equipped with the three characteristics (e.g., design of an automatic layout analysis, construction of a large meta-data training set, and construction of Layout-MetaBERT). We designed an automatic layout analysis using PDFMiner. Based on the layout analysis, a large volume of metadata-separated training data, including the title, abstract, author name, author affiliated organization, and keywords, were automatically extracted. Moreover, we constructed Layout-MetaBERT to extract the metadata from academic journals with varying layout formats. The experimental results with Layout-MetaBERT exhibited robust performance (Macro-F1, 93.27 layout formats.
READ FULL TEXT