Language modeling via stochastic processes

03/21/2022
by   Rose E. Wang, et al.
0

Modern language models can generate high-quality short texts. However, they often meander or are incoherent when generating longer texts. These issues arise from the next-token-only language modeling objective. To address these issues, we introduce Time Control (TC), a language model that implicitly plans via a latent stochastic process. TC does this by learning a representation which maps the dynamics of how text changes in a document to the dynamics of a stochastic process of interest. Using this representation, the language model can generate text by first implicitly generating a document plan via a stochastic process, and then generating text that is consistent with this latent plan. Compared to domain-specific methods and fine-tuning GPT2 across a variety of text domains, TC improves performance on text infilling and discourse coherence. On long text generation settings, TC preserves the text structure both in terms of ordering (up to +40 consistency (up to +17 more than the baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro