Large-Scale 3D Scene Classification With Multi-View Volumetric CNN

12/26/2017
by   Dror Aiger, et al.
0

We introduce a method to classify imagery using a convo- lutional neural network (CNN) on multi-view image pro- jections. The power of our method comes from using pro- jections of multiple images at multiple depth planes near the reconstructed surface. This enables classification of categories whose salient aspect is appearance change un- der different viewpoints, such as water, trees, and other materials with complex reflection/light response proper- ties. Our method does not require boundary labelling in images and works on pixel-level classification with a small (few pixels) context, which simplifies the cre- ation of a training set. We demonstrate this application on large-scale aerial imagery collections, and extend the per-pixel classification to robustly create a consistent 2D classification which can be used to fill the gaps in non- reconstructible water regions. We also apply our method to classify tree regions. In both cases, the training data can quickly be generated using a small number of manually- created polygons on a map. We show that even with a very simple and standard network our CNN outperforms the state-of-the-art image classification, the Inception-V3 model retrained from a large collection of aerial images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro