Large-Scale Product Retrieval with Weakly Supervised Representation Learning

08/01/2022
by   Xiao Han, et al.
0

Large-scale weakly supervised product retrieval is a practically useful yet computationally challenging problem. This paper introduces a novel solution for the eBay Visual Search Challenge (eProduct) held at the Ninth Workshop on Fine-Grained Visual Categorisation workshop (FGVC9) of CVPR 2022. This competition presents two challenges: (a) E-commerce is a drastically fine-grained domain including many products with subtle visual differences; (b) A lacking of target instance-level labels for model training, with only coarse category labels and product titles available. To overcome these obstacles, we formulate a strong solution by a set of dedicated designs: (a) Instead of using text training data directly, we mine thousands of pseudo-attributes from product titles and use them as the ground truths for multi-label classification. (b) We incorporate several strong backbones with advanced training recipes for more discriminative representation learning. (c) We further introduce a number of post-processing techniques including whitening, re-ranking and model ensemble for retrieval enhancement. By achieving 71.53 MAR, our solution "Involution King" achieves the second position on the leaderboard.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset