Latency Modeling of Hyperledger Fabric for Blockchain-enabled IoT Networks
Hyperledger Fabric (HLF), one of the most popular private blockchain platforms, has recently received attention for blockchain-enabled Internet of Things (BC-IoT) networks. However, for IoT devices handling latency-critical tasks, the additional time spent in HLF has emerged as a new challenge in BC-IoT networks. In this paper, therefore, we develop an HLF latency model using the probability distribution fitting method for HLF-based IoT networks. We first explain the architecture and the transaction flow in HLF, and the structure of an HLF-based IoT network. After implementing realHLF, we capture the latencies that each transaction experiences for various HLF environments, and then show that the total latency of HLF can be modeled as a Gamma distribution. Our HLF latency model is also validated by conducting a goodness-of-fit test, i.e., KS test. Furthermore, we explore the impacts of three HLF parameters including transaction generation rate, block size, and block-generation timeout on the HLF latency. As a result, some HLF design insights on minimizing the latency are provided for HLF-based IoT networks.
READ FULL TEXT