LEA*: An A* Variant Algorithm with Improved Edge Efficiency for Robot Motion Planning

09/19/2023
by   Dongliang Zheng, et al.
0

In this work, we introduce a new graph search algorithm, lazy edged based A* (LEA*), for robot motion planning. By using an edge queue and exploiting the idea of lazy search, LEA* is optimally vertex efficient similar to A*, and has improved edge efficiency compared to A*. LEA* is simple and easy to implement with minimum modification to A*, resulting in a very small overhead compared to previous lazy search algorithms. We also explore the effect of inflated heuristics, which results in the weighted LEA* (wLEA*). We show that the edge efficiency of wLEA* becomes close to LazySP and, thus is near-optimal. We test LEA* and wLEA* on 2D planning problems and planning of a 7-DOF manipulator. We perform a thorough comparison with previous algorithms by considering sparse, medium, and cluttered random worlds and small, medium, and large graph sizes. Our results show that LEA* and wLEA* are the fastest algorithms to find the plan compared to previous algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro