Learning Ball-balancing Robot Through Deep Reinforcement Learning

08/22/2022
by   Yifan Zhou, et al.
0

The ball-balancing robot (ballbot) is a good platform to test the effectiveness of a balancing controller. Considering balancing control, conventional model-based feedback control methods have been widely used. However, contacts and collisions are difficult to model, and often lead to failure in balancing control, especially when the ballbot tilts a large angle. To explore the maximum initial tilting angle of the ballbot, the balancing control is interpreted as a recovery task using Reinforcement Learning (RL). RL is a powerful technique for systems that are difficult to model, because it allows an agent to learn policy by interacting with the environment. In this paper, by combining the conventional feedback controller with the RL method, a compound controller is proposed. We show the effectiveness of the compound controller by training an agent to successfully perform a recovery task involving contacts and collisions. Simulation results demonstrate that using the compound controller, the ballbot can keep balance under a larger set of initial tilting angles, compared to the conventional model-based controller.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset