Learning Deep Hidden Nonlinear Dynamics from Aggregate Data
Learning nonlinear dynamics from diffusion data is a challenging problem since the individuals observed may be different at different time points, generally following an aggregate behaviour. Existing work cannot handle the tasks well since they model such dynamics either directly on observations or enforce the availability of complete longitudinal individual-level trajectories. However, in most of the practical applications, these requirements are unrealistic: the evolving dynamics may be too complex to be modeled directly on observations, and individual-level trajectories may not be available due to technical limitations, experimental costs and/or privacy issues. To address these challenges, we formulate a model of diffusion dynamics as the hidden stochastic process via the introduction of hidden variables for flexibility, and learn the hidden dynamics directly on aggregate observations without any requirement for individual-level trajectories. We propose a dynamic generative model with Wasserstein distance for LEarninG dEep hidden Nonlinear Dynamics (LEGEND) and prove its theoretical guarantees as well. Experiments on a range of synthetic and real-world datasets illustrate that LEGEND has very strong performance compared to state-of-the-art baselines.
READ FULL TEXT