Learning Few-shot Open-set Classifiers using Exemplar Reconstruction

07/31/2021
by   Sayak Nag, et al.
0

We study the problem of how to identify samples from unseen categories (open-set classification) when there are only a few samples given from the seen categories (few-shot setting). The challenge of learning a good abstraction for a class with very few samples makes it extremely difficult to detect samples from the unseen categories; consequently, open-set recognition has received minimal attention in the few-shot setting. Most open-set few-shot classification methods regularize the softmax score to indicate uniform probability for open class samples but we argue that this approach is often inaccurate, especially at a fine-grained level. Instead, we propose a novel exemplar reconstruction-based meta-learning strategy for jointly detecting open class samples, as well as, categorizing samples from seen classes via metric-based classification. The exemplars, which act as representatives of a class, can either be provided in the training dataset or estimated in the feature domain. Our framework, named Reconstructing Exemplar based Few-shot Open-set ClaSsifier (ReFOCS), is tested on a wide variety of datasets and the experimental results clearly highlight our method as the new state of the art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset