Learning on tree architectures outperforms a convolutional feedforward network
Advanced deep learning architectures consist of tens of fully connected and convolutional hidden layers, which are already extended to hundreds, and are far from their biological realization. Their implausible biological dynamics is based on changing a weight in a non-local manner, as the number of routes between an output unit and a weight is typically large, using the backpropagation technique. Here, offline and online CIFAR-10 database learning on 3-layer tree architectures, inspired by experimental-based dendritic tree adaptations, outperforms the achievable success rates of the 5-layer convolutional LeNet. Its highly pruning tree backpropagation procedure, where a single route connects an output unit and a weight, represents an efficient dendritic deep learning.
READ FULL TEXT