Learning the Markov Decision Process in the Sparse Gaussian Elimination

09/30/2021
by   Yingshi Chen, et al.
0

We propose a learning-based approach for the sparse Gaussian Elimination. There are many hard combinatorial optimization problems in modern sparse solver. These NP-hard problems could be handled in the framework of Markov Decision Process, especially the Q-Learning technique. We proposed some Q-Learning algorithms for the main modules of sparse solver: minimum degree ordering, task scheduling and adaptive pivoting. Finally, we recast the sparse solver into the framework of Q-Learning. Our study is the first step to connect these two classical mathematical models: Gaussian Elimination and Markov Decision Process. Our learning-based algorithm could help improve the performance of sparse solver, which has been verified in some numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset