Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification
Person re-identification (re-ID) plays an important role in applications such as public security and video surveillance. Recently, learning from synthetic data, which benefits from the popularity of synthetic data engine, has attracted attention from both academia and the public eye. However, existing synthetic datasets are limited in quantity, diversity and realisticity, and cannot be efficiently used for generalizable re-ID problem. To address this challenge, we construct and label a large-scale synthetic person dataset named FineGPR with fine-grained attribute distribution. Moreover, aiming to fully exploit the potential of FineGPR and promote the efficient training from millions of synthetic data, we propose an attribute analysis pipeline AOST to learn attribute distribution in target domain, then apply style transfer network to eliminate the gap between synthetic and real-world data and thus is freely deployed to new scenarios. Experiments conducted on benchmarks demonstrate that FineGPR with AOST outperforms (or is on par with) existing real and synthetic datasets, which suggests its feasibility for re-ID and proves the proverbial less-is-more principle. We hope this fine-grained dataset could advance research towards re-ID in real scenarios.
READ FULL TEXT