Leveraging Auxiliary Domain Parallel Data in Intermediate Task Fine-tuning for Low-resource Translation

06/02/2023
by   Shravan Nayak, et al.
0

NMT systems trained on Pre-trained Multilingual Sequence-Sequence (PMSS) models flounder when sufficient amounts of parallel data is not available for fine-tuning. This specifically holds for languages missing/under-represented in these models. The problem gets aggravated when the data comes from different domains. In this paper, we show that intermediate-task fine-tuning (ITFT) of PMSS models is extremely beneficial for domain-specific NMT, especially when target domain data is limited/unavailable and the considered languages are missing or under-represented in the PMSS model. We quantify the domain-specific results variations using a domain-divergence test, and show that ITFT can mitigate the impact of domain divergence to some extent.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset