Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits

05/27/2022
by   Gergely Neu, et al.
12

We study the Bayesian regret of the renowned Thompson Sampling algorithm in contextual bandits with binary losses and adversarially-selected contexts. We adapt the information-theoretic perspective of Russo and Van Roy [2016] to the contextual setting by introducing a new concept of information ratio based on the mutual information between the unknown model parameter and the observed loss. This allows us to bound the regret in terms of the entropy of the prior distribution through a remarkably simple proof, and with no structural assumptions on the likelihood or the prior. The extension to priors with infinite entropy only requires a Lipschitz assumption on the log-likelihood. An interesting special case is that of logistic bandits with d-dimensional parameters, K actions, and Lipschitz logits, for which we provide a O(√(dKT)) regret upper-bound that does not depend on the smallest slope of the sigmoid link function.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset