Light scattering control in transmission and reflection with neural networks

07/28/2020
by   , et al.
0

Scattering often limits the controlled delivery of light in applications such as biomedical imaging, optogenetics, optical trapping, and fiber-optic communication or imaging. Such scattering can be controlled by appropriately shaping the light wavefront entering the material. Here, we develop a machine-learning approach for light control. Using pairs of binary intensity patterns and intensity measurements we train neural networks (NNs) to provide the wavefront corrections necessary to shape the beam after the scatterer. Additionally, we demonstrate that NNs can be used to find a functional relationship between transmitted and reflected speckle patterns. Establishing the validity of this relationship, we focus and scan in transmission through opaque media using reflected light. Our approach shows the versatility of NNs for light shaping, for efficiently and flexibly correcting for scattering, and in particular the feasibility of transmission control based on reflected light.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset