Lightweight Long-Range Generative Adversarial Networks
In this paper, we introduce novel lightweight generative adversarial networks, which can effectively capture long-range dependencies in the image generation process, and produce high-quality results with a much simpler architecture. To achieve this, we first introduce a long-range module, allowing the network to dynamically adjust the number of focused sampling pixels and to also augment sampling locations. Thus, it can break the limitation of the fixed geometric structure of the convolution operator, and capture long-range dependencies in both spatial and channel-wise directions. Also, the proposed long-range module can highlight negative relations between pixels, working as a regularization to stabilize training. Furthermore, we propose a new generation strategy through which we introduce metadata into the image generation process to provide basic information about target images, which can stabilize and speed up the training process. Our novel long-range module only introduces few additional parameters and is easily inserted into existing models to capture long-range dependencies. Extensive experiments demonstrate the competitive performance of our method with a lightweight architecture.
READ FULL TEXT