Linking Generative Adversarial Learning and Binary Classification

09/05/2017
by   Akshay Balsubramani, et al.
0

In this note, we point out a basic link between generative adversarial (GA) training and binary classification -- any powerful discriminator essentially computes an (f-)divergence between real and generated samples. The result, repeatedly re-derived in decision theory, has implications for GA Networks (GANs), providing an alternative perspective on training f-GANs by designing the discriminator loss function.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro