LIRA: Lifelong Image Restoration from Unknown Blended Distortions

08/19/2020
by   Jianzhao Liu, et al.
11

Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise the novel lifelong image restoration problem for blended distortions. We first design a base fork-join model in which multiple pre-trained expert models specializing in individual distortion removal task work cooperatively and adaptively to handle blended distortions. When the input is degraded by a new distortion, inspired by adult neurogenesis in human memory system, we develop a neural growing strategy where the previously trained model can incorporate a new expert branch and continually accumulate new knowledge without interfering with learned knowledge. Experimental results show that the proposed approach can not only achieve state-of-the-art performance on blended distortions removal tasks in both PSNR/SSIM metrics, but also maintain old expertise while learning new restoration tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro