Longitudinal Speech Biomarkers for Automated Alzheimer's Detection

11/22/2021
by   Jordi Laguarta Soler, et al.
0

We introduce a novel audio processing architecture, the Open Voice Brain Model (OVBM), improving detection accuracy for Alzheimer's (AD) longitudinal discrimination from spontaneous speech. We also outline the OVBM design methodology leading us to such architecture, which in general can incorporate multimodal biomarkers and target simultaneously several diseases and other AI tasks. Key in our methodology is the use of multiple biomarkers complementing each other, and when two of them uniquely identify different subjects in a target disease we say they are orthogonal. We illustrate the methodology by introducing 16 biomarkers, three of which are orthogonal, demonstrating simultaneous above state-of-the-art discrimination for apparently unrelated diseases such as AD and COVID-19. Inspired by research conducted at the MIT Center for Brain Minds and Machines, OVBM combines biomarker implementations of the four modules of intelligence: The brain OS chunks and overlaps audio samples and aggregates biomarker features from the sensory stream and cognitive core creating a multi-modal graph neural network of symbolic compositional models for the target task. We apply it to AD, achieving above state-of-the-art accuracy of 93.8 longitudinally tracks relative disease progression using multiple biomarkers, 16 in the reported AD task. The ultimate aim is to help medical practice by detecting onset and treatment impact so that intervention options can be longitudinally tested. Using the OBVM design methodology, we introduce a novel lung and respiratory tract biomarker created using 200,000+ cough samples to pre-train a model discriminating cough cultural origin. This cough dataset sets a new benchmark as the largest audio health dataset with 30,000+ subjects participating in April 2020, demonstrating for the first-time cough cultural bias.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset