Low-frequency compensated synthetic impulse responses for improved far-field speech recognition
We propose a method for generating low-frequency compensated synthetic impulse responses that improve the performance of far-field speech recognition systems trained on artificially augmented datasets. We design linear-phase filters that adapt the simulated impulse responses to equalization distributions corresponding to real-world captured impulse responses. Our filtered synthetic impulse responses are then used to augment clean speech data from LibriSpeech dataset [1]. We evaluate the performance of our method on the real-world LibriSpeech test set. In practice, our low-frequency compensated synthetic dataset can reduce the word-error-rate by up to 8.8 speech recognition.
READ FULL TEXT