LuNet: A Deep Neural Network for Network Intrusion Detection

by   Peilun Wu, et al.

Network attack is a significant security issue for modern society. From small mobile devices to large cloud platforms, almost all computing products, used in our daily life, are networked and potentially under the threat of network intrusion. With the fast-growing network users, network intrusions become more and more frequent, volatile and advanced. Being able to capture intrusions in time for such a large scale network is critical and very challenging. To this end, the machine learning (or AI) based network intrusion detection (NID), due to its intelligent capability, has drawn increasing attention in recent years. Compared to the traditional signature-based approaches, the AI-based solutions are more capable of detecting variants of advanced network attacks. However, the high detection rate achieved by the existing designs is usually accompanied by a high rate of false alarms, which may significantly discount the overall effectiveness of the intrusion detection system. In this paper, we consider the existence of spatial and temporal features in the network traffic data and propose a hierarchical CNN+RNN neural network, LuNet. In LuNet, the convolutional neural network (CNN) and the recurrent neural network (RNN) learn input traffic data in sync with a gradually increasing granularity such that both spatial and temporal features of the data can be effectively extracted. Our experiments on two network traffic datasets show that compared to the state-of-the-art network intrusion detection techniques, LuNet not only offers a high level of detection capability but also has a much low rate of false positive-alarm.


Pelican: A Deep Residual Network for Network Intrusion Detection

One challenge for building a secure network communication environment is...

STC-IDS: Spatial-Temporal Correlation Feature Analyzing based Intrusion Detection System for Intelligent Connected Vehicles

Intrusion detection is an important defensive measure for the security o...

BotGraph: Web Bot Detection Based on Sitemap

The web bots have been blamed for consuming large amount of Internet tra...

DualNet: Locate Then Detect Effective Payload with Deep Attention Network

Network intrusion detection (NID) is an essential defense strategy that ...

1D CNN Based Network Intrusion Detection with Normalization on Imbalanced Data

Intrusion detection system (IDS) plays an essential role in computer net...

Performance Analysis of a Foreground Segmentation Neural Network Model

In recent years the interest in segmentation has been growing, being use...

Intrusion Resilience Systems for Modern Vehicles

Current vehicular Intrusion Detection and Prevention Systems either incu...

Please sign up or login with your details

Forgot password? Click here to reset