m-CUBES An efficient and portable implementation of multi-dimensional integration for gpus

02/03/2022
by   Ioannis Sakiotis, et al.
0

The task of multi-dimensional numerical integration is frequently encountered in physics and other scientific fields, e.g., in modeling the effects of systematic uncertainties in physical systems and in Bayesian parameter estimation. Multi-dimensional integration is often time-prohibitive on CPUs. Efficient implementation on many-core architectures is challenging as the workload across the integration space cannot be predicted a priori. We propose m-Cubes, a novel implementation of the well-known Vegas algorithm for execution on GPUs. Vegas transforms integration variables followed by calculation of a Monte Carlo integral estimate using adaptive partitioning of the resulting space. m-Cubes improves performance on GPUs by maintaining relatively uniform workload across the processors. As a result, our optimized Cuda implementation for Nvidia GPUs outperforms parallelization approaches proposed in past literature. We further demonstrate the efficiency of m-Cubes by evaluating a six-dimensional integral from a cosmology application, achieving significant speedup and greater precision than the CUBA library's CPU implementation of VEGAS. We also evaluate m-Cubes on a standard integrand test suite. m-Cubes outperforms the serial implementations of the Cuba and GSL libraries by orders of magnitude speedup while maintaining comparable accuracy. Our approach yields a speedup of at least 10 when compared against publicly available Monte Carlo based GPU implementations. In summary, m-Cubes can solve integrals that are prohibitively expensive using standard libraries and custom implementations. A modern C++ interface header-only implementation makes m-Cubes portable, allowing its utilization in complicated pipelines with easy to define stateful integrals. Compatibility with non-Nvidia GPUs is achieved with our initial implementation of m-Cubes using the Kokkos framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro