M-PACT: Michigan Platform for Activity Classification in Tensorflow

04/16/2018
by   Eric Hofesmann, et al.
0

Action classification is a widely known and popular task that offers an approach towards video understanding. The absence of an easy-to-use platform containing state-of-the-art (SOTA) models presents an issue for the community. Given that individual research code is not written with an end user in mind and in certain cases code is not released, even for published articles, the importance of a common unified platform capable of delivering results while removing the burden of developing an entire system cannot be overstated. To try and overcome these issues, we develop a tensorflow-based unified platform to abstract away unnecessary overheads in terms of an end-to-end pipeline setup in order to allow the user to quickly and easily prototype action classification models. With the use of a consistent coding style across different models and seamless data flow between various submodules, the platform lends itself to the quick generation of results on a wide range of SOTA methods across a variety of datasets. All of these features are made possible through the use of fully pre-defined training and testing blocks built on top of a small but powerful set of modular functions that handle asynchronous data loading, model initializations, metric calculations, saving and loading of checkpoints, and logging of results. The platform is geared towards easily creating models, with the minimum requirement being the definition of a network architecture and preprocessing steps from a large custom selection of layers and preprocessing functions. M-PACT currently houses four SOTA activity classification models which include, I3D, C3D, ResNet50+LSTM and TSN. The classification performance achieved by these models are, 43.86 TSN achieve 93.66

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset