MA2QL: A Minimalist Approach to Fully Decentralized Multi-Agent Reinforcement Learning

09/17/2022
by   Kefan Su, et al.
0

Decentralized learning has shown great promise for cooperative multi-agent reinforcement learning (MARL). However, non-stationarity remains a significant challenge in decentralized learning. In the paper, we tackle the non-stationarity problem in the simplest and fundamental way and propose multi-agent alternate Q-learning (MA2QL), where agents take turns to update their Q-functions by Q-learning. MA2QL is a minimalist approach to fully decentralized cooperative MARL but is theoretically grounded. We prove that when each agent guarantees a ε-convergence at each turn, their joint policy converges to a Nash equilibrium. In practice, MA2QL only requires minimal changes to independent Q-learning (IQL). We empirically evaluate MA2QL on a variety of cooperative multi-agent tasks. Results show MA2QL consistently outperforms IQL, which verifies the effectiveness of MA2QL, despite such minimal changes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset