MAMDR: A Model Agnostic Learning Method for Multi-Domain Recommendation

by   Linhao Luo, et al.

Large-scale e-commercial platforms in the real-world usually contain various recommendation scenarios (domains) to meet demands of diverse customer groups. Multi-Domain Recommendation (MDR), which aims to jointly improve recommendations on all domains, has attracted increasing attention from practitioners and researchers. Existing MDR methods often employ a shared structure to leverage reusable features for all domains and several specific parts to capture domain-specific information. However, data from different domains may conflict with each other and cause shared parameters to stay at a compromised position on the optimization landscape. This could deteriorate the overall performance. Despite the specific parameters are separately learned for each domain, they can easily overfit on data sparsity domains. Furthermore, data distribution differs across domains, making it challenging to develop a general model that can be applied to all circumstances. To address these problems, we propose a novel model agnostic learning method, namely MAMDR, for the multi-domain recommendation. Specifically, we first propose a Domain Negotiation (DN) strategy to alleviate the conflict between domains and learn better shared parameters. Then, we develop a Domain Regularization (DR) scheme to improve the generalization ability of specific parameters by learning from other domains. Finally, we integrate these components into a unified framework and present MAMDR which can be applied to any model structure to perform multi-domain recommendation. Extensive experiments on various real-world datasets and online applications demonstrate both the effectiveness and generalizability of MAMDR.


page 1

page 2

page 3

page 4


HAMUR: Hyper Adapter for Multi-Domain Recommendation

Multi-Domain Recommendation (MDR) has gained significant attention in re...

AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction

Large-scale commercial platforms usually involve numerous business domai...

Dynamic Domain Generalization

Domain generalization (DG) is a fundamental yet very challenging researc...

An Unified Search and Recommendation Foundation Model for Cold-Start Scenario

In modern commercial search engines and recommendation systems, data fro...

One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction

Traditional industrial recommenders are usually trained on a single busi...

Multi-Domain Learning From Insufficient Annotations

Multi-domain learning (MDL) refers to simultaneously constructing a mode...

Adaptive Domain Interest Network for Multi-domain Recommendation

Industrial recommender systems usually hold data from multiple business ...

Please sign up or login with your details

Forgot password? Click here to reset