Memoized Pull-Tabbing for Functional Logic Programming

08/27/2020
by   Michael Hanus, et al.
0

Pull-tabbing is an evaluation technique for functional logic programs which computes all non-deterministic results in a single graph structure. Pull-tab steps are local graph transformations to move non-deterministic choices towards the root of an expression. Pull-tabbing is independent of a search strategy so that different strategies (depth-first, breadth-first, parallel) can be used to extract the results of a computation. It has been used to compile functional logic languages into imperative or purely functional target languages. Pull-tab steps might duplicate choices in case of shared subexpressions. This could result in a dramatic increase of execution time compared to a backtracking implementation. In this paper we propose a refinement which avoids this efficiency problem while keeping all the good properties of pull-tabbing. We evaluate a first implementation of this improved technique in the Julia programming language.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro