Memristor-based Deep Convolution Neural Network: A Case Study

09/14/2018
by   Fan Zhang, et al.
0

In this paper, we firstly introduce a method to efficiently implement large-scale high-dimensional convolution with realistic memristor-based circuit components. An experiment verified simulator is adapted for accurate prediction of analog crossbar behavior. An improved conversion algorithm is developed to convert convolution kernels to memristor-based circuits, which minimizes the error with consideration of the data and kernel patterns in CNNs. With circuit simulation for all convolution layers in ResNet-20, we found that 8-bit ADC/DAC is necessary to preserve software level classification accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro