Meta Learning for Few-shot Keyword Spotting

12/26/2018
by   Yangbin Chen, et al.
0

Keyword spotting with limited training data is a challenging task which can be treated as a few-shot learning problem. In this paper, we present a meta-learning approach which learns a good initialization of the base KWS model from existed labeled dataset. Then it can quickly adapt to new tasks of keyword spotting with only a few labeled data. Furthermore, to strengthen the ability of distinguishing the keywords with the others, we incorporate the negative class as external knowledge to the meta-training process, which proves to be effective. Experiments on the Google Speech Commands dataset show that our proposed approach outperforms the baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset