MetaGAD: Learning to Meta Transfer for Few-shot Graph Anomaly Detection

05/18/2023
by   Xiongxiao Xu, et al.
0

Graph anomaly detection has long been an important problem in various domains pertaining to information security such as financial fraud, social spam, network intrusion, etc. The majority of existing methods are performed in an unsupervised manner, as labeled anomalies in a large scale are often too expensive to acquire. However, the identified anomalies may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies. In realistic scenarios, it is often feasible to obtain limited labeled anomalies, which have great potential to advance graph anomaly detection. However, the work exploring limited labeled anomalies and a large amount of unlabeled nodes in graphs to detect anomalies is rather limited. Therefore, in this paper, we study a novel problem of few-shot graph anomaly detection. We propose a new framework MetaGAD to learn to meta-transfer the knowledge between unlabeled and labeled nodes for graph anomaly detection. Experimental results on six real-world datasets with synthetic anomalies and "organic" anomalies (available in the dataset) demonstrate the effectiveness of the proposed approach in detecting anomalies with limited labeled anomalies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset