MIMO Channel Estimation using Score-Based Generative Models
Channel estimation is a critical task in multiple-input multiple-output digital communications that has effects on end-to-end system performance. In this work, we introduce a novel approach for channel estimation using deep score-based generative models. These models are trained to estimate the gradient of the log-prior distribution, and can be used to iteratively refine estimates, given observed measurements of a signal. We introduce a framework for training score-based generative models for wireless channels, as well as performing channel estimation using posterior sampling at test time. We derive theoretical robustness guarantees of channel estimation with posterior sampling in single-input single-output scenarios, and show that the observations regarding estimation performance are verified experimentally in MIMO channels. Our results in simulated clustered delay line channels show competitive in-distribution performance without error floors in the high signal-to-noise ratio regime, and robust out-of-distribution performance, outperforming competing deep learning methods by up to 5 dB in end-to-end communication performance, while the complexity analysis reveals how model architecture can efficiently trade performance for estimation latency.
READ FULL TEXT