Minimax Learning for Remote Prediction

05/31/2018
by   Cheuk Ting Li, et al.
0

The classical problem of supervised learning is to infer an accurate predictor of a target variable Y from a measured variable X by using a finite number of labeled training samples. Motivated by the increasingly distributed nature of data and decision making, in this paper we consider a variation of this classical problem in which the prediction is performed remotely based on a rate-constrained description M of X. Upon receiving M, the remote node computes an estimate Ŷ of Y. We follow the recent minimax approach to study this learning problem and show that it corresponds to a one-shot minimax noisy source coding problem. We then establish information theoretic bounds on the risk-rate Lagrangian cost and a general method to design a near-optimal descriptor-estimator pair, which can be viewed as a rate-constrained analog to the maximum conditional entropy principle used in the classical minimax learning problem. Our results show that a naive estimate-compress scheme for rate-constrained prediction is not in general optimal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro