Minimum-volume Multichannel Nonnegative matrix factorization for blind source separation
Multichannel blind source separation aims to recover the latent sources from their multichannel mixture without priors. A state-of-art blind source separation method called independent low-rank matrix analysis (ILRMA) unified independent vector analysis (IVA) and nonnegative matrix factorization (NMF). However, speech spectra modeled by NMF may not find a compact representation and it may not guarantee that each source is identifiable. To address the problem, here we propose a modified blind source separation method that enhances the identifiability of the source model. It combines ILRMA with penalty item of volume constraint. The proposed method is optimized by standard majorization-minimization framework based multiplication updating rule, which ensures the stability of convergence. Experimental results demonstrate the effectiveness of the proposed method compared with AuxIVA, MNMF and ILRMA.
READ FULL TEXT