Mobile IMUs Reveal Driver's Identity From Vehicle Turns
As vehicle maneuver data becomes abundant for assisted or autonomous driving, their implication of privacy invasion/leakage has become an increasing concern. In particular, the surface for fingerprinting a driver will expand significantly if the driver's identity can be linked with the data collected from his mobile or wearable devices which are widely deployed worldwide and have increasing sensing capabilities. In line with this trend, this paper investigates a fast emerging driving data source that has driver's privacy implications. We first show that such privacy threats can be materialized via any mobile device with IMUs (e.g., gyroscope and accelerometer). We then present Dri-Fi (Driver Fingerprint), a driving data analytic engine that can fingerprint the driver with vehicle turn(s). Dri-Fi achieves this based on IMUs data taken only during the vehicle's turn(s). Such an approach expands the attack surface significantly compared to existing driver fingerprinting schemes. From this data, Dri-Fi extracts three new features --- acceleration along the end-of-turn axis, its deviation, and the deviation of the yaw rate --- and exploits them to identify the driver. Our extensive evaluation shows that an adversary equipped with Dri-Fi can correctly fingerprint the driver within just one turn with 74.1 drivers --- typical of an immediate family or close-friends circle --- respectively. Moreover, with measurements on more than one turn, the adversary can achieve up to 95.3 respectively.
READ FULL TEXT